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Conscioushess as Information

O

Consciousness is simultaneously
 differentiated — each conscious state is one amongst a vast repertoire
* integrated — each conscious state is unitary and indivisible

Quantity of consciousness is a function of balanced
integration and differentiation of information

Tononi, 2008



Brain Networks in MEG
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Integration

Cortical dynamics are complex and re-entrant during wakefulness

Massimini et al., 2009



Differentiation
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Methodology
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Spectral Decomposition Information Theory

Weighted Phase Lag Index Symbolic Mutual Information
Chennu et al.,, 2014 King et al., 2016



Conscious Levels vs. Contents
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Alpha Band

Baseline Moderate Sedation Recovery

Chennu et al., 2016



Conscious Levels vs. Contents
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After the ICU

Long-term Neurorehabilitation



Control
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Newcombe et al., 2015



Patient 1
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Balance between integration and
differentiation of brain networks improves with
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Alpha Band
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Chennu et al., 2014; Chennu et al, in prep



Brain Connectivity in DoC
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Brain Networks in DoC
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Long-distance information sharing
characterises consciousness in states
of low awareness

King et al., 2013; Sitt et al.,, 2014



Discriminating Levels of Consciousness
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Classifying Behavioural Consciousness

MCS

CRS-R diagnosis

UWS

UWS MCS
EEG diagnosis

X% =19.91, p < 0.0001



Hidden Awareness in the Vegetative
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Chennu et al,, 2014



EEG predicts Outcomes
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EEG characteristics predict GOS-E outcomes one year after assessment



EEG predicts Outcomes

Outcome +ve

CRS-R diagnosis

Outcome -ve

Outcome -ve Outcome +ve
EEG prediction

Chi2 =8.58, p =0.003
EEG characteristics predict one-year outcomes



EEG and Admission Diagnosis

Admission diagnosis Admission + EEG diagnosis

Fisher’s exact test odds ratio =0.34, p = 0.01

B Accurate clinical diagnosis B Accurate clinical or EEG diagnosis
B Misdiagnosed Bl Misdiagnosed

EEG significantly improves accuracy of admission diagnosis



Convergence in Individual Patients

¢

Robust Small-world P300b Tennis imagery
networks

Promising convergent evidence in a vegetative patient who was

I ischarged on 23 September 2011. He was in coma throughout his stay at Addenbrooke’s and his
neurological state on discharge was again coma with a Glasgow Coma Score of E1, VT, M3. '

but made a behavioural recovery to full consciousness within a year.




Neural Signatures of Consciousness

Brain Connectivity

A range of EEG-derived brain measures track the level of consciousness
Machine-learning to develop classification tools available at the bedside
Sitt et al,, 2014



Current Challenges

* Machine learning has been
applied to detect
consciousness using EEG

* Significant divergence due

to
— Arousal variation
— Motivation and cognitive state
— Signal quality and reliability

— A current research challenge

— Fundamental requirement for
clinical utility

— And bedside deployment
alongside clinical assessment
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Summary

 EEG Connectomics

— Applications in Disorders of
Consciousness
i

* Shadows of underlying ,,/,;{_4;7'
o i [ i
cortical networks ol

— Correspondence with resting
networks from fMRI

i
i

* Applications
— Clinical diagnostics and
prognostics

— Bedside monitoring



Evelyn Trust Project

Recently funded Evelyn Trust funded project to develop
* Feasible frameworks to take EEG to the patient

* Aim to longitudinally acquire and analyse functional EEG
— right at the patient’s beside, in rehabilitation centres in Cambridgeshire

— Automated data analysis pipeline

Filter, resample Automatic
and epoch quality control

* Develop clinically valuable EEG metrics and visualisations

— Assess their diagnostic and prognostic utility
— And relevance to individual patient trajectories The

Evelyn

Trust

Read raw

data
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